

Please write clearly in block capita	S.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature I declare this is	my own work.	

A-level **MATHEMATICS**

Paper 1

Tuesday 4 June 2024

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
TOTAL		

Answer all questions in the spaces provided.

Find the coefficient of x in the expansion of 1

$$(4x^3-5x^2+3x-2)(x^5+4x+1)$$

Circle your answer.

[1 mark]

-5

-2 7

11

2 The function f is defined by $f(x) = e^x + 1$ for $x \in \mathbb{R}$

Find an expression for $f^{-1}(x)$

Tick (✓) one box.

[1 mark]

$$f^{-1}(x) = \ln (x - 1)$$

$$f^{-1}(x) = \ln(x) - 1$$

$$f^{-1}(x) = \frac{1}{e^x + 1}$$

$$f^{-1}(x) = \frac{x-1}{e}$$

Turn over for the next question

3 The expression

$$\frac{12x^2 + 3x + 7}{3x - 5}$$

can be written as

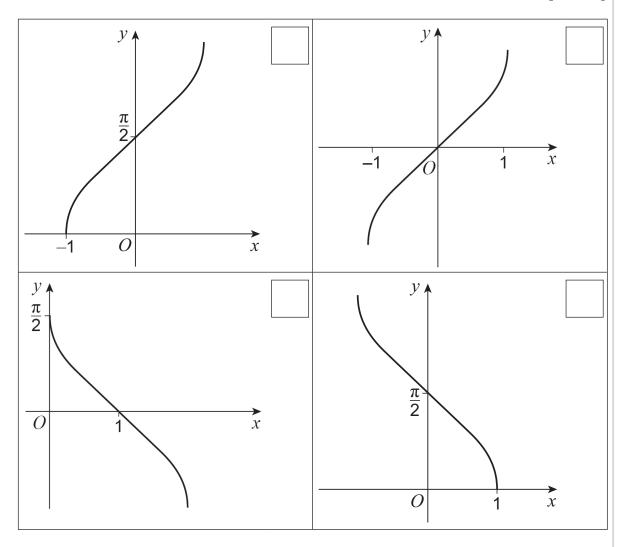
$$Ax + B + \frac{C}{3x - 5}$$

State the value of A

Circle your answer.

[1 mark]

3 4 7 9



4 One of the diagrams below shows the graph of $y = \arccos x$

Identify the graph of $y = \arccos x$

Tick (✓) one box.

[1 mark]

Turn over for the next question

5	Solve the equation		
		$\sin^2 x = 1$	
	for $0^{\circ} < x < 360^{\circ}$		
			[3 marks]

6	Use the chain rule to find $\frac{dy}{dx}$ when $y = (x^3 + 5x)^7$	[2 marks]

Turn over for the next question

7	Show that		
		$\frac{3+\sqrt{8n}}{1+\sqrt{2n}}$	
	can be written as		
		$\frac{4n-3+\sqrt{2n}}{2n-1}$	
	where n is a positive integer.		[4 marks]

3 (a)	Find the first three terms, in ascending powers of x , in the expansion of	
	$(2 + kx)^5$	
	where k is a positive constant.	[3 marks
(b)	Hence, given that the coefficient of x is four times the coefficient of x^2 , find the of k	ne value

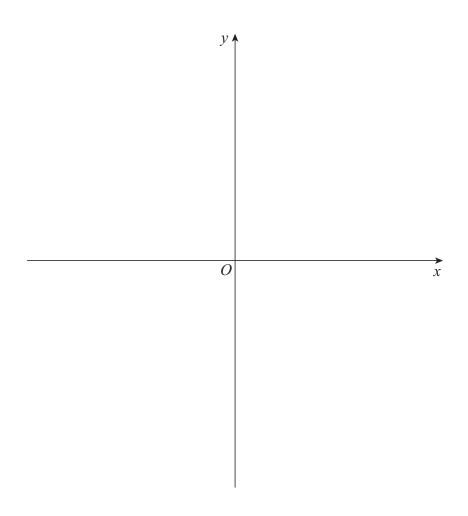
9 (a)	Show that, for small values of $ heta$ measured in radians	
	$\cos 4\theta + 2 \sin 3\theta - \tan 2\theta \approx A + B\theta + C\theta^2$	
	where A , B and C are constants to be found.	[3 marks]

9 (b)	Use your answer to part (a) to find an approximation for
	cos 0.28 + 2 sin 0.21 – tan 0.14
	Give your answer to three decimal places. [2 marks]

Turn over for the next question

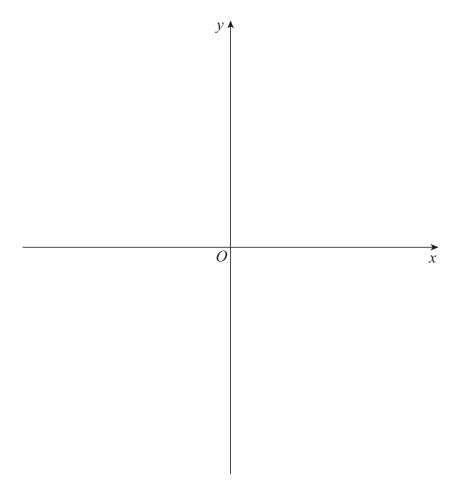
10 (a)	An arithmetic sequence has 300 terms.	
	The first term of the sequence is -7 and the last term is 32	
	Find the sum of the 300 terms.	[2 marks]

0 (b)	A school holds a raffle at its summer fair.	
	There are nine prizes.	
	The total value of the prizes is £1260	
	The values of the prizes form an arithmetic sequence.	
	The top prize has the highest value, and the bottom prize has the least value	·.
	The value of the top prize is six times the value of the bottom prize.	
	Find the value of the top prize.	[4 marks]


11 It is given that

$$f(x) = x(x-a)(x-6)$$

where 0 < a < 6


11 (a) Sketch the graph of y = f(x) on the axes below.

[3 marks]

11 (b) Sketch the graph of y = f(-2x) on the axes below.

[2 marks]

Turn over for the next question

12	The terms, u_n , of a periodic sequence are defined by		
	$u_1 = 3$ and $u_{n+1} = \frac{-6}{u_n}$		
12 (a)	Find u_2 , u_3 and u_4	[2 marks]	
12 (b)	State the period of the sequence.	[1 mark]	
		[1 mark]	

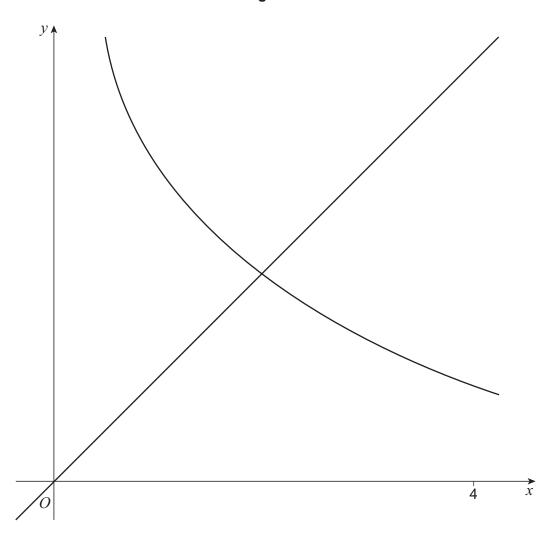
12 (c)	Find the value of $\sum_{n=1}^{101} u_n$	[2 marks]
	Turn over for the next question	

13 (a)	It is given that	
	$P(x) = 4x^3 + 8x^2 + 11x + 4$	
	Use the factor theorem to show that $(2x + 1)$ is a factor of $P(x)$	[2 marks]
13 (b)	Express $P(x)$ in the form	
. ,	$P(x) = (2x+1)(ax^2 + bx + c)$	
	where a , b and c are constants to be found.	[2 marks]

13 (c)	Given that n is a positive integer, use your answer to part (b) to explain why $4n^3 + 8n^2 + 11n + 4$ is never prime.	[2 marks]
	Turn over for the next question	
	. a oron for the next quotien	

(a)	The equation	
	$x^3 = e^{6-2x}$	
	has a single solution, $x = \alpha$	
	By considering a suitable change of sign, show that α lies between 0 and 4	[2 mark
(b)	Show that the equation $x^3 = e^{6-2x}$ can be rearranged to give	
	$x = 3 - \frac{3}{2} \ln x$	[3 mar

14 (c) (i)	Use the iterative formula
	$x_{n+1} = 3 - \frac{3}{2} \ln x_n$
	-
	with $x_1 = 4$, to find x_2 , x_3 and x_4
	Give your answers to three decimal places.
	[2 marks]
	Question 14 continues on the next page
	Question 14 continues on the next page


14 (c) (ii) Figure 1 below shows a sketch of parts of the graphs of

$$y = 3 - \frac{3}{2} \ln x$$
 and $y = x$

On **Figure 1**, draw a staircase or cobweb diagram to show how convergence takes place. Label, on the x-axis, the positions of x_2 , x_3 and x_4

[2 marks]

Figure 1

14	(c)	(iii) Ex	plain	why	the	iterative	formula

$x_{n+1} = 3 - \frac{3}{2} \ln x_n$	
fails to converge to α when the starting value is $x_1 = 0$	[1 mark]
	·

Turn over for the next question

15 (a)	Show that the expression	
	$\sin 2 heta \csc heta + \cos 2 heta \sec heta$	
	can be written as	
	$4\cos heta-\sec heta$	
	where $\sin heta eq 0$ and $\cos heta eq 0$	
		[4 marks]

15 (b) A student is attempting to solve the equation

$$\sin 2\theta \csc \theta + \cos 2\theta \sec \theta = 3$$
 for $0^{\circ} \le \theta \le 360^{\circ}$

They use the result from part (a), and write the following incorrect solution:

$$\sin 2\theta \csc \theta + \cos 2\theta \sec \theta = 3$$

Step 1
$$4 \cos \theta - \sec \theta = 3$$

Step 2
$$4 \cos \theta - \frac{1}{\cos \theta} - 3 = 0$$

Step 3
$$4 \cos^2 \theta - 3 \cos \theta - 1 = 0$$

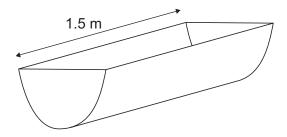
Step 4
$$\cos \theta = 1 \text{ or } \cos \theta = -0.25$$

Step 5
$$\theta = 0^{\circ}$$
, 104.5°, 255.5°, 360°

15 (b) (i)	Explain why the studen	t should reject one of	their values for $\cos \theta$ in Step 4
------------	------------------------	------------------------	--

[1 mark]

15 (h) (ii)	State the	correct solutions	to the	equation
15 (1) (1)	State IIIe	COLLECT SOLUTIONS	10 1116	EUUAHUH


$$\sin 2\theta \csc \theta + \cos 2\theta \sec \theta = 3$$
 for $0^{\circ} \le \theta \le 360^{\circ}$

[1 mark]

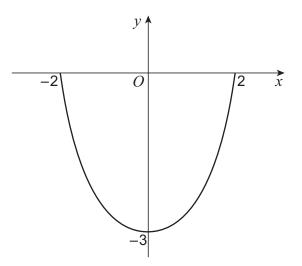

16 Figure 2 below shows a 1.5 metre length of pipe.

Figure 2

The symmetrical cross-section of the pipe is shown below, in **Figure 3**, where x and y are measured in centimetres.

Figure 3

Use the trapezium rule, with the values shown in the table below, to find the best estimate for the **volume** of the pipe.

x	0	0.4	0.8	1.2	1.6	2
y	-3	-2.943	-2.752	-2.353	-1.572	0

				[5 marks]
	 		 	
				 ······································

Turn over for the next question

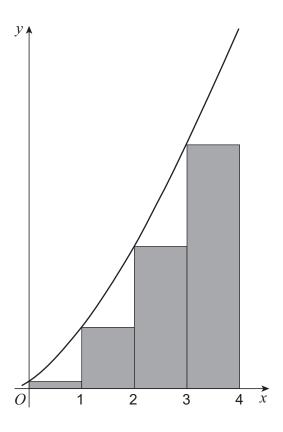
17	The function f is defined by	
	$f(x) = x + 1 \text{ for } x \in \mathbb{R}$	
	The function g is defined by	
	$g(x) = \ln x$	
	where ${\bf g}$ has its greatest possible domain.	
17 (a)	Using set notation, state the range of f	[2 marks]
17 (b)	State the domain of g	[1 mark]
17 (c)	The composite function h is given by	
	$h(x) = gf(x)$ for $x \in \mathbb{R}$	
17 (c) (i)	Write down an expression for $h(x)$ in terms of x	[1 mark]

17 (c) (ii)	Determine if h has an inverse.
	Fully justify your answer.
	[2 marks]
	Town and for the most most or
	Turn over for the next question

(a)	Use a suitable substitution to show that	
	$\int_0^4 (4x+1)(2x+1)^{\frac{1}{2}} dx$	
	can be written as	
	$\frac{1}{2} \int_{a}^{9} \left(2u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du$	
	where a is a constant to be found.	
		[5 mark

18 (b)	Hence, or otherwise, show that	
	$\int_{0}^{4} (4x+1)(2x+1)^{\frac{1}{2}} dx = \frac{1322}{15}$	
	• 0	[4 marks]

Question 18 continues on the next page


18 (c) A graph has the equation

$$y = (4x+1)\sqrt{2x+1}$$

A student uses four rectangles to approximate the area under the graph between the lines x=0 and x=4

The rectangles are all the same width.

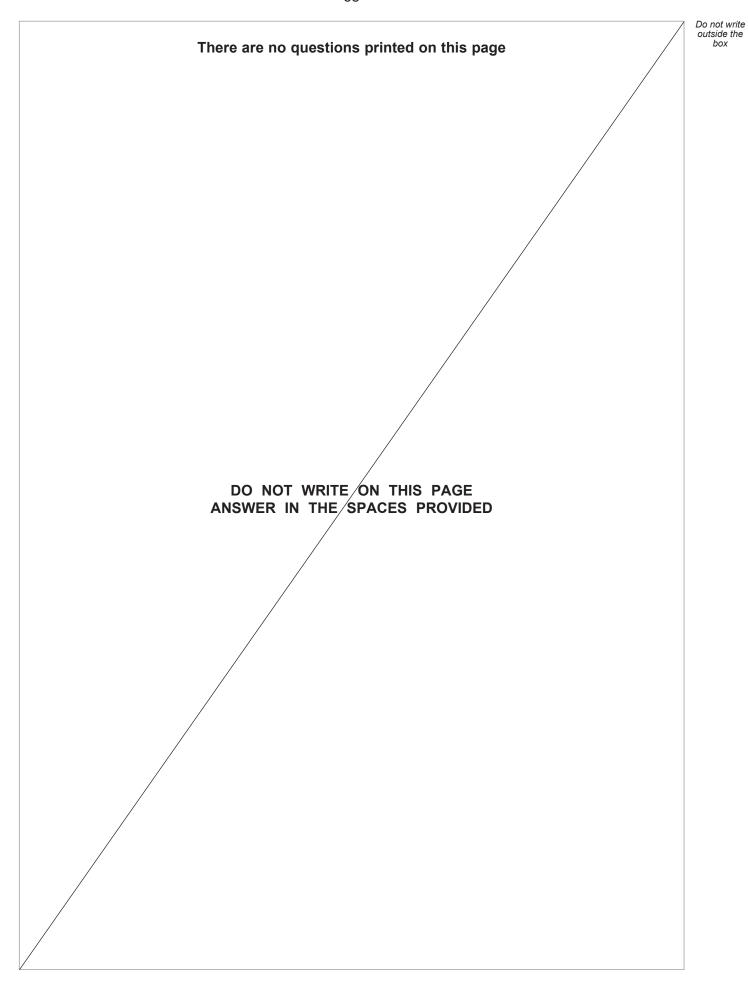
All the rectangles are drawn under the curve as shown in the diagram below.

The total area of the four rectangles is \boldsymbol{A}	
The student decides to improve their approximation by increasing the nur rectangles used.	mber of
Explain why the value of the student's improved approximation will be	
greater than A , but less than $\frac{1322}{15}$	[2 m

Turn over for the next question

19	A curve has equation
	$y^3e^{2x} + 2y - 16x = k$
	where k is a constant.
	The curve has a stationary point on the <i>y</i> -axis.
	Determine the value of k
	[7 marks]

20	A gardener stores rainwater in a cylindrical container.
	The container has a height of 130 centimetres.
	The gardener empties the water from the container through a hose.
	The hose is attached 5 centimetres from the bottom of the container.
	At time t minutes after the hose is switched on, the depth of water, h centimetres, in the container decreases at a rate which is proportional to $h-5$
	Initially the container of water is full, and the depth of water is decreasing at a rate of 1.5 centimetres per minute.
20 (a)	Show that
	$\frac{\mathrm{d}h}{\mathrm{d}t} = -0.012(h-5)$ [3 marks]



20 (b)	Solve the differential equation		
	$\frac{\mathrm{d}h}{\mathrm{d}t} = -$	-0.012(h-5)	
	to find an expression for h in terms of t		[5 marks]

20 (c)	Find the time taken for the container to be half empty.	
	Give your answer to the nearest minute.	[2 marks]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet.	
	This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2024 AQA and its licensors. All rights reserved.	

